B.sc(H) part 1 paper 1 Topic:Inverse circular &Hyperbolic Functions of Complex Quantitie Subject:Mathematics Dr hari kant singh RRS college mokama

1: Inverse circular functions of complex quantities

If $\sin (x + iy) = \alpha + i\beta$, then x + iy is said to be inverse sine of $(\alpha + i\beta)$ and is denoted by $\sin^{-1} (\alpha + i\beta)$.

Thus $x + iy = \sin^{-1}(\alpha_1 + i\beta)$ in the last our particles \dots (1)

We have also, and the bound of the war and the the

 $\sin \{n\pi + (-1)^n(x+iy) = \sin (x+iy) = \alpha + i\beta$ $n\pi + (-1)^n(x+iy) = \sin^{-1}(\alpha + i\beta)$...(2)

Similarly if $\cos(x + iy) = \alpha + i\beta$, then

$$\cos^{-1}(\alpha + i\beta) = 2n\pi \pm (x + iy)$$

or if $\tan (x + iy) = \alpha + i\beta$, then $\tan^{-1}(\alpha + i\beta) = n\pi + (x + iy)$ etc.

These results follow from the following considerations which we have done earlier.

If $\sin \theta = \sin \alpha$, then $\theta = n\pi + (-1)^n \alpha$;

if $\cos \theta = \cos \alpha$, then $\theta = 2n\pi \pm \alpha$;

if $\tan \theta = \tan \alpha$, then $\theta = n\pi + \alpha$.

Thus we find that the inverse circular function of a complex quantity is a many-valued function.

The function thus obtained may be described as the general value of the inverse function.

The principal value of the inverse function is obtained by putting n=0 in the general value of the function and is defined as follows:

The principal value of $\sin^{-1}(\alpha + i\beta)$ is that value of $n\pi + (-1)^n(x + iy)$ (i.e. x + iy, on putting n = 0) whose real part x lies between $-\frac{\pi}{2}$ and $+\frac{\pi}{2}$.

The principal value of $\cos^{-1}(\alpha + i\beta)$ is that value of $2n\pi \pm (x + iy)$ which is such that its real part x (on putting n = 0) lies between 0 and π .

The principal value of $tan^{-1}(\alpha + i\beta)$ is that value of $n\pi + (x + iy)$ which is such that its real part x lies between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

2:Inverse Hyperbolic Functions

These are defined in the same manner as inverse circular functions.

If $\sin hz = w$, then z is called the inverse hyperbolic sine of w and is denoted by $\sin h^{-1}w$ and we write $z = \sin h^{-1}w$.

Similarly, we define $\cos h^{-1}w$, $\tan h^{-1}w$ etc.

Case I. Let $w = \sin hz$

where w and z both are imaginary numbers given by w = u + iv and z = x + iy, then $z = \sin h^{-1}w$.

Now,
$$w = \sin hz = \frac{1}{2} (e^z - e^{-z}) = \frac{1}{2} \left(e^z - \frac{1}{e^z} \right)$$

$$\therefore \qquad e^{2z} - 2we^z - 1 = 0.$$

Treating this as a quadratic in e^z , we get

$$e^{z} = \frac{2w \pm \sqrt{4w^{2} + 4}}{2} = w \pm \sqrt{w^{2} + 1}$$

$$\therefore z = 2n\pi i + \log(w \sqrt{w^{2} + 1})$$
or,
$$z = 2n\pi i + \log(w - \sqrt{w^{2} + 1}).$$
Since $w - \sqrt{w^{2} + 1} = \frac{(w - \sqrt{w^{2} + 1}) \times (w + \sqrt{w^{2} + 1})}{(w + \sqrt{w^{2} + 1})}$

$$= \frac{-1}{w + \sqrt{w^2 + 1}}$$

$$\log (w - \sqrt{w^2 + 1}) = \log (-1) - \log (w + \sqrt{w^2 + 1})$$

$$= i\pi - \log (w + \sqrt{w^2 + 1}).$$
Thus

Thus,
$$z = 2n\pi i + \log(w + \sqrt{w^2 + 1})$$

or,
$$z = (2n+1) i\pi - \log (w + \sqrt{w^2 + 1})$$

= $(2n+1) i\pi + (-1)^{2n+1} \log (w + \sqrt{w^2 + 1})$.

Both the values of z can be included in the expression

$$z = n\pi i + (-1)^n \log (w + \sqrt{w^2 + 1})$$

which is the general value of $\sin h^{-1}w$.

The principal value of $\sin h^{-1}w = \log (w + \sqrt{w^2 + 1})$.

Case II. Let $w = \cos hz$, then $z = \cos h^{-1}w$.

Now
$$w = \cos hz = \frac{1}{2} (e^z + e^{-z}) = \frac{1}{2} \left(e^z + \frac{1}{e^z} \right)$$
.

$$e^{2z}-2we^z+1=0.$$

$$e^{2z} - 2we^{z} + 1 = 0.$$
As before, $e^{z} = \frac{2w \pm \sqrt{4w^{2} - 4}}{2} = w \pm \sqrt{w^{2} - 1}.$

Hence $z = \log (w \pm \sqrt{w^2 - 1})$.

Since
$$w - \sqrt{w^2 - 1} = \frac{(w - \sqrt{w^2 - 1}) \times (w + \sqrt{w^2 - 1})}{w + \sqrt{w^2 - 1}}$$

$$=\frac{1}{w+\sqrt{w^2-1}}$$

$$\log (w - \sqrt{w^2 - 1}) = -\log (w + \sqrt{w^2 - 1}).$$

Thus $z = 2n\pi i \pm \log (w + \sqrt{w^2 - 1})$ which is the general value of $\cos h^{-1}w$, and the principal value of

$$\cos h^{-1}w = \log (w + \sqrt{w^2 - 1}).$$

Case III. Let $w = \tan hz$ so that $z = \tan h^{-1}w$.

Now
$$w = \tan hz = \frac{\sin hz}{\cos hz} = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$$

$$e^{2z} = \frac{1+w}{1-w}$$
 (by componendo and dividendo)

$$\Rightarrow 2z = 2n\pi i + \log \frac{1+w}{1-w}$$

$$\Rightarrow z = n\pi i + \frac{1}{2} \log \frac{1+w}{1-w}$$

which is the general value of $\tan h^{-1}w$.

the death has define bed and us our

The principal value of $tan h^{-1}w = \frac{1}{2} log \frac{1+w}{1}$.

Similarly the general and principal values of cosec $h^{-1}w$, sec $h^{-1}w$ and $\cot h^{-1}w$ may be obtained.

4.8 Relation between the Inverse Hyperbolic Functions and Inverse Circular Functions

```
If w = \sin hz ...(1)

then w = -i \sin (iz), since \sin hz = -i \sin (iz)

\Rightarrow iw = \sin iz ...(2)

From (1), z = \sin h^{-1}w,

and from (2), iz = \sin^{-1}(iw) \Rightarrow z = -i \sin^{-1}(iw)

Hence \sin h^{-1}w = -i \sin^{-1}(iw).

Similarly, \cos h^{-1}w = -i \cos^{-1}(w),

and \tan h^{-1}w = -i \tan^{-1}(iw), and so on.
```